Forward Observer In-Flight Dual Copy System

Richard Knepper, Matthew Standish
NASA Operation Ice Bridge Field Support
Research Technologies
Indiana University

April 3, 2013
Overview

- Project Overview
- Workflow
- Requirements and Constraints
- Inflight
- Proposed Improvements
- Further Applications
Project History: IU/CReSIS Partnership

- Airborne Synthetic Aperture Radar Systems
 - NSF Polar Grid Project
 - Operation Ice Bridge 2009
 - NSF Science & Technology Center grant for CReSIS
 - Operation Ice Bridge 2010-2012, 2012-2015
 - MultiChannel Radar Depth Sounder
 - Snow Band
 - KU Band
 - KU does radar well, IU does data well
Workflow (original)

- Radar systems on the aircraft connect to machine running LabView
- After flight, drives unloaded to Ground Lab
- Backup/Copy Operations
- Matlab Processing of Radar Data
- Final processing on IU’s Quarry cluster
- Issues:
 - Delays returning results to data processing team
 - Overnight Turnaround
 - Physical Drive management
System Requirements / Constraints

- Intake of data at rates increasing every 6 months
 - Multiple sources – 3 or 4 instruments
 - File consistency and security throughout
 - Multiple copies
 - Ability to process data quickly
- Staffing issues – do we want to send an “IT Guy” to 2 or more missions a year?
- Ideal: archive and process data while in flight, simple enough to allow the radar/data processing team to use
 - FPGAs? SSDs? Vibration issues?
Forward Observer System

Replace the radar storage array with network: 40Gb Infiniband transport infrastructure

- 3 Servers with 24 SSD drives each
 - Head – Windows Share to Radar
 - Science – Matlab Processing
 - Archive – Checksum and copy to:
- Vibration-mounted mechanical drives for cycling out data to ground processing
- Monitoring/Management server

Iteration 2:
- No mechanical drives
- Process management allows processing during collection
Benefits from a computational science system in the plane

- Better data assurance across multiple copies
- Possible to monitor data rates from the radar computers more closely
- Possible to process in flight
- Sync of data processing teams and radar teams
- Significant improvement in usability
- Faster storage and processing (for some tasks) than the systems at IU and KU
- Storage utilization
- File counts
- Current reads/writes
- Status of processing queues
- Environmental status of servers
- Error tracking
- Radar status
- GPS info
- Results of “Quick-Look” Matlab processing to show the ice bed
Future Improvements

• Improved drive management – handling 24 SSD’s at a time for sync/backup
• Better management of Matlab processing
• Workflow documentation and automation
• End goal: remove the “IT guy” and make the system more manageable
• Apply to new instruments and new platforms, provide data and computational capability in about 10RU of space on a single 7500KVA UPS
Thanks!

- Questions: rich@iu.edu
- Work supported by:
 - NASA Operation Ice Bridge
 - NSF STC for CReSIS Award
 - NSF Polargrid MRI Award
 - IU Pervasive Technology Institute (Lilly Foundation)